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This work focuses on the approximation of parametric steady Navier–Stokes equations by
the reduced basis method. For a particular instance of the parameters under consideration,
we are able to solve the underlying partial differential equations, compute an output, and
give sharp error bounds. The computations are split into an offline part, where the values of
the parameters are not yet identified, but only given within a range of interest, and an
online part, where the problem is solved for an instance of the parameters. The offline part
is expensive and is used to build a reduced basis and prepare all the ingredients – mainly
matrix–vector and scalar products, but also eigenvalue computations – necessary for the
online part, which is fast.

We provide a model problem – describing natural convection phenomena in a laterally
heated cavity – characterized by three parameters: Grashof and Prandtl numbers and
the aspect ratio of the cavity. We show the feasibility and efficiency of the a posteriori error
estimation by the natural norm approach considering several test cases by varying two dif-
ferent parameters. The gain in terms of CPU time with respect to a parallel finite element
approximation is of three magnitude orders with an acceptable – indeed less than 0.1% –
error on the selected outputs.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction and motivation

The reduced basis approximation (see [23,30,21]) is a discretization method for the solution of parametrized partial dif-
ferential equations. It permits rapid and reliable evaluation of input–output relationships in the limit of many queries – in the
design, optimization, control and characterization contexts. We describe here a non-linear example: the case of the steady
incompressible Navier–Stokes equations to model natural heat convection with more than one (physical, geometrical)
parameter in affine dependence.1 The case with one (physical) parameter within an affine parametric dependence has been
treated in detail in [3] considering high Grashof numbers (�107) and using a natural norm approach, and, previously, in
[20,36] for lower Grashof numbers (�104). A field of interest for this kind of applications deals with microfluidics, in biomedical
sciences, environmental sciences and, more generally, with mechanical engineering (automotive and aerospace industry).

The use of the reduced basis method in numerical fluid dynamics is aimed at providing real-time solutions and informa-
tion on fluid mechanics outputs. Its extension to steady Navier–Stokes equations, which requires treatment of non-lineari-
ties, provides, e.g., an efficient optimization toolbox in design problems with a certain degree of complexity. The study of
parametrized systems is well suited also to carry out shape optimization and shape design problems considering several geo-
metrical parameters.
. All rights reserved.
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The reduced basis approach and associated offline–online procedures can be applied without serious computational dif-
ficulties to quadratic non-linearities. Much work focuses on the stationary incompressible (quadratically non-linear) Na-
vier–Stokes equations [6,8,10]: suitable stable approximations were first considered in [10,12,22], and more recently
[24,28] also for non-affine parametric dependence; rigorous a posteriori error estimation – within the general Brezzi–Rap-
paz–Raviart (‘‘BRR”) a posteriori framework [1,2] – is considered in [3,20,36,37]. The latter is admittedly quite complicated,
and presently limited to few parameters – Reynolds, Prandtl, Grashof numbers or an aspect ratio, as an example of geomet-
rical parametrization. In this work we follow this line and focus our attention on the following aspects: (i) the efficient treat-
ment of the non-linear term; (ii) the geometrical and physical parametrization; (iii) the incorporation of a stable
approximation for pressure [31]; (iv) an accurate and feasible a posteriori error estimation based on the natural norm ap-
proach [3].

The aim of this paper is to provide extensive tests to validate and generalize the reduced basis method for natural con-
vection problems in a rectangular cavity (see Fig. 1) increasing the number of physical and geometrical parameters: in addi-
tion to the Grashof number (Gr), used in [3], we consider, the Prandtl number (Pr) and the aspect ratio ðAÞ of the laterally
heated cavity, combined only in couples such as Gr–Pr, Gr–A, Pr–A. The combination of physical and geometrical parameters
in the same problem provides a wide variety of applications involving thermo-fluid-dynamics.

An additional effort has been devoted in testing all the ingredients we need to compute error bounds and a posteriori error
estimation (as certificate of fidelity of the methodology) in the multi-parametric case: in particular the lower bound to the
inf–sup constant and the eigenvalues problems involved [1–3]. In the end, given a parameter value, either we are able to give
an explicit correct error bound, or we cannot ensure existence or uniqueness of the solution and then of the output (which
means that we have to enrich our basis).

The present work is organized as follows: after this introduction, as a short review on reduced basis for Navier–Stokes
equations, in Section 2.1 the natural convection problem is presented (see Fig. 1). In Section 2.3 we recall the reduced basis
formulation for Navier–Stokes equations, then in Sections 2.4–2.6 we recall all the principal ingredients for the a posteriori
error estimation based on natural norm and existence and uniqueness results. The stabilization of the reduced basis and the
offline and online algorithms are considered in Section 3, with references to the literature for technicalities [31,21,30]. In
Section 4 numerical results and computational costs and savings are reported for three different parameter combinations.
Some conclusions and description of future work follow in Section 5.

1.1. Offline–online computational decomposition

One of the keys in the reduced basis method is the decomposition of the computational work into an offline and an online
stage (see [30,21]).

The former is carried out independently from a specific parameter of a problem at hand. A greedy algorithm is performed
to search for the parameters that provide a heuristically optimized reduced basis for the Galerkin approximation, see [30] for
comparison with other methodologies and performances. In the meantime, the ingredients for the resolution of the reduced
discrete system and for the computation of the dual norm of the residual are computed. These hang on finite element ma-
trix–vector and vector–vector products. In a second stage the error bound ingredients are built by solving a set of generalized
eigenvalue problems.

The online stage involves a (some) particular instance(s) of the parameter. The system that has to be solved is the Galerkin
projection on the space spanned by the reduced basis. The complexity of both the resolution of this system and the compu-
tation of the error bounds depends on the chosen number of basis functions but is independent from the number of degrees
of freedom of the underlying finite element problem.

1.2. Abstract formulation

We are interested in the numerical approximation of parameter ðlÞ dependent non-linear partial differential equations
and the prediction of an ‘‘output of interest” which is a functional of the field variable ueðlÞ,
Fig. 1. A closed cavity. On the left the temperature is constant, on the right the heat flux is constant, and the top and the bottom of the cavity are insulated.
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seðlÞ ¼ ‘ðueðlÞÞ 2 R; ð1Þ
where ‘ is a continuous linear form. The solution ueðlÞ may not be unique, nevertheless we consider only one solution
branch; hence we presume local uniqueness.

The outputs may be related to energies or forces, stresses or strains, flow-rates or pressure drops, temperatures or fluxes,
and are functions of an ‘‘input” parameter P-vector l 2 D � RP , which is related to geometry, physical properties, boundary
conditions, or loads.

The l-parametrized non-linear partial differential equation is written in its variational formulation. The field variable
ueðlÞ 2 Xe – say velocity, pressure, or temperature – is then the solution of
aðueðlÞ;v; lÞ ¼ f ðv; lÞ; 8v 2 Xe: ð2Þ
Here Xe is the appropriate function space with norm k � kX ; l � ðl1 � � �lPÞ is in D � RP , and að�; �; lÞ : Xe � Xe ! R is a param-
eter-dependent form, which is quadratic with respect to its first argument and linear with respect to the second one. The
form f ð�; lÞ : Xe ! R is parameter-dependent and linear.

We take a ‘‘reference” finite element approximation to the exact output and field variable, sðlÞ � sN ðlÞ and
uðlÞ � uN ðlÞ 2 XN � X, such that for a given l 2 D,
sðlÞ ¼ ‘ðuðlÞÞ and aðuðlÞ;v; lÞ ¼ f ðv; lÞ; 8v 2 X: ð3Þ
N accounts for the number of degrees of freedom in the finite element problem; we assume that N is chosen sufficiently
large so that sðlÞ and uðlÞ are essentially indistinguishable from seðlÞ and ueðlÞ, respectively.

In many cases, to achieve the desired accuracy, the evaluation l! sðlÞ by discrete projection methods, like finite element
or spectral methods, is simply too costly, like in many-query or real-time contexts, often of growing interest in engineering.
We shall build our reduced basis approximation upon this reference finite element approximation; and we shall evaluate the
error in our reduced basis approximation with respect to this reference approximation. The online complexity (and stability)
of our reduced basis approach is independent of N [20,36,35]; hence, we may choose N to be ‘‘arbitrarily” large at no detri-
ment to (online) performance. However, in our application, we selected N as small as possible to provide good accuracy and
low computational costs.

2. A parametrized natural convection problem

2.1. Governing equations

Our natural convection model problem is made up by a two-dimensional rectangular cavity of height 1 under vertical
gravity (Fig. 1), with the imposition of a constant temperature on one side, a heated wall on the opposite side, and insulated

walls at the top and the bottom of the cavity. We consider three parameters l ¼ ðl1;l2;l3Þ ¼ 1ffiffiffiffi
Gr
p ; 1

Pr
ffiffiffiffi
Gr
p ;A

� �
, where Gr is the

Grashof number (buoyancy over viscosity ratio), which is defined as ðbDTgL3Þ=m2 (g is the gravity constant, b is the thermal
expansion coefficient, DT is the temperature difference, L is the length scale and m is the kinematic viscosity), Pr is the Prandtl
number (dissipation to conduction ratio) and A is the aspect ratio (actually the length of the cavity, since the height of the
cavity is equal to unity). Our field variable uðlÞ ¼ ðu1;u2; h; p; kÞ is composed by the velocity components ðu1;u2Þ, the tem-
perature h, the pressure p and the Lagrange multiplier k related to the zero-mean value of the pressure.

For simplicity in the exposition, in this work we identify three test cases, where in turn one of the parameters is fixed. We
denote by D � R3 the set of possible/allowed instances of l. Here D is actually a hyper-plane of R3 (i.e., only two parameters
may vary simultaneously), in a future work we will provide an example where D is truly three-dimensional (i.e., the three
parameters may vary simultaneously).

We impose homogeneous Dirichlet boundary conditions for the velocity ðu1;u2Þ, while for the temperature h we impose
homogeneous Dirichlet boundary conditions on the left side, homogeneous Neumann boundary conditions on the top and
the bottom of the cavity, and constant unitary Neumann boundary conditions on the heated side Ch (@nh ¼ 1 on Ch). We scale
the pressure so that

R
X p ¼ 0.

We are going to describe our variables with respect to a reference unitary square domain X, hence our weak form needs to
incorporate a deformation in the x1 direction.

The system of partial differential equations in the real rectangular domain X reads (with partial derivatives with respect
to �x1 and �x2)
�u1

�u2

� �
� r

� �
�u1

�u2

� �
¼ �r�pþ 1ffiffiffiffiffiffi

Gr
p D

�u1

�u2

� �
þ

0
�h

� �
;

div
�u1

�u2

� �
¼ 0;

�u1

�u2

� �
� r

� �
�h ¼ 1

Pr
ffiffiffiffiffiffi
Gr
p D�h:
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We have written the variables in the ‘‘real” domain (which is equal to X only for A ¼ 1) with an overline to distinguish from
those in the reference domain X that we will use all along this work.

Our outputs of interest are the inverse of the Nusselt number [20] and the flux through the middle half section Cs parallel
to Ch (note that Ch ¼ Ch ¼ 1 and Cs ¼ Cs ¼ 1=2)
sð1ÞðlÞ ¼
1
jChj

Z
Ch

�hðlÞ ¼ 1
jChj

Z
Ch

hðlÞ; sð2ÞðlÞ ¼
1
jCsj

Z
Cs

�u1ðlÞ ¼
1
jsCsj

Z
Cs

u1ðlÞ:
2.2. Weak formulation and affine decomposition

The functional space suited for the weak formulation of our partial differential equation is Xe ¼ H1
0ðXÞ�

H1
0ðXÞ � H1ðXÞ � L2ðXÞ � R. As introduced in Section 1.2, we use the finite element method. We presume that the number

of degrees of freedom N is so large, that the reference solution uðlÞ 2 X and the reference output lðuðlÞÞ are ‘‘indistinguish-
able” from ueðlÞ 2 Xe and lðueðlÞÞ. We are adopting a P2 � P2 � P1 finite element approximation for velocity, temperature
and pressure, respectively. The weak formulation of our problem reads
l1

l3

Z
X
@1uj@1v j þ l1l3

Z
X
@2uj@2v j þ

l2

l3

Z
X
@1h@1vþ l2l3

Z
X
@2h@2vþ

Z
X

uj@1z1v j þ
Z

X
zj@1u1v j þ

Z
X

z1@1hv

þ
Z

X
u1@1fvþ l3

Z
X

uj@2z2v j þ l3

Z
X

zj@2u2v j þ l3

Z
X

z2@2hvþ l3

Z
X

u2@2fv�
Z

X
p@1v1 �

Z
X

q@1u1

� l3

Z
X

p@2v2 � l3

Z
X

q@2u2 þ l3k
Z

X
pþ l3c

Z
X

q� l3

Z
X

hv2 ¼ 0; 8u; v 2 X: ð4Þ
We take advantage of the affine dependence on the parameters to write the weak formulation (4) into its affine components
(cf. Eq. (2)). We denote elements in X as u ¼ ðu1;u2; h; p; kÞ; v ¼ ðv1;v2;v; q; cÞ and z ¼ ðz1; z2; f; � � �Þ. Note that k (c, respec-
tively) is a Lagrange multiplier associated with the zero-mean condition on p (q, respectively). The form a (cf. Eqs. (2) and
(4)) can be written as an affine combination of Q0 bilinear forms aq

0 and Q 1 trilinear forms aq
1:
aðu;v; lÞ ¼
XQ0

q¼1

Hq
0ðlÞa

q
0ðu;vÞ þ

1
2

XQ1

q¼1

Hq
1ðlÞa

q
1ðu;u;vÞ; 8u; v 2 X; 8l 2 D; ð5Þ
where Hq
0; Hq

1 : D ! R are parameter-dependent functions and aq
0 : X � X ! R; 1 6 q 6 Q 0, and aq

1 : X � X�
X ! R; 1 6 q 6 Q 1, are parameter-independent continuous bilinear and trilinear forms. (In particular, this assumption pre-
sume a quadratic non-linearity in our partial differential equation.) Without loss of generality, we assume that, for
1 6 q 6 Q 1 and 8u; v; w 2 X; aq

1ðu;w;vÞ ¼ aq
1ðw;u;vÞ. We shall further assume that Hq

i 2 C
1ðDÞ; 1 6 q 6 Qi; i ¼ 0;1.

Three test cases are considered in the following subsections (as a general remark we understand the summation over re-
peated indices and partial derivatives with respect to x1 and x2). We choose to present three different combinations of the
parameters range. In each case we fix one of the parameters and we define the set D of possible/allowed instances, as well as
the corresponding affine decomposition.

In the following sections we are going to provide an explicit formulation for Hq
0ðlÞ; Hq

1ðlÞ; aq
0ðu;vÞ; aq

1ðu;vÞ; f ðv; lÞ for
each example we are going to introduce.

2.2.1. Gr–Pr
We keep fixed the aspect ratio A to 1 and set
D ¼ l ¼ ðl1;l2;l3Þ ¼
1ffiffiffiffiffiffi
Gr
p ;

1
Pr

ffiffiffiffiffiffi
Gr
p ;A

� �� �
:

In this case Q 0 ¼ 3; Q 1 ¼ 1, and the affine components are:
a1
0ðu;vÞ ¼ �

Z
X

p@iv i �
Z

X
q@iui þ k

Z
X

pþ c
Z

X
q�

Z
X

hv2; H1
0ðlÞ ¼ 1;

a2
0ðu;vÞ ¼

Z
X
@iuj@iv j; H2

0ðlÞ ¼ l1;

a3
0ðu;vÞ ¼

Z
X
@ih@ iv; H8

0ðlÞ ¼ l2
and
a1
1ðu; z;vÞ ¼

Z
X

uj@iziv j þ
Z

X
zj@iuiv j þ

Z
X

zi@ihvþ
Z

X
ui@ifv; H1

1ðlÞ ¼ 1:
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2.2.2. Gr–A
We keep fixed the Prandtl number and set
D ¼ l ¼ ðl1;l2;l3Þ ¼
1ffiffiffiffiffiffi
Gr
p ;

1
Pr

ffiffiffiffiffiffi
Gr
p ;A

� �� �
:

Here Q 0 ¼ 4; Q 1 ¼ 2, and the affine components are
a1
0ðu;vÞ ¼ �

Z
X

p@1v1 �
Z

X
q@1u1; H1

0ðlÞ ¼ 1;

a2
0ðu;vÞ ¼ �

Z
X

p@2v2 �
Z

X
q@2u2 �

Z
X

hv2 þ k
Z

X
pþ c

Z
X

q; H2
0ðlÞ ¼ l3;

a3
0ðu;vÞ ¼

Z
X
@1uj@1v j þ

1
Pr

Z
X
@1h@1v; H3

0ðlÞ ¼
l1

l3
;

a4
0ðu;vÞ ¼

Z
X
@2uj@2v j þ

1
Pr

Z
X
@2h@2v; H4

0ðlÞ ¼ l1l3
and
a1
1ðu; z;vÞ ¼

Z
X

uj@1z1v j þ
Z

X
zj@1u1v j þ

Z
X

z1@1hvþ
Z

X
u1@1fv; H1

1ðlÞ ¼ 1;

a2
1ðu; z;vÞ ¼

Z
X

uj@2z2v j þ
Z

X
zj@2u2v j þ

Z
X

z2@2hvþ
Z

X
u2@2fv; H2

1ðlÞ ¼ l3:
2.2.3. Pr–A
We fix the Grashof number to 105 and set
D ¼ l ¼ ðl1;l2;l3Þ ¼
1ffiffiffiffiffiffi
Gr
p ;

1
Pr

ffiffiffiffiffiffi
Gr
p ;A

� �� �
:

Then Q0 ¼ 5; Q1 ¼ 2, and the affine components are
a1
0ðu;vÞ ¼ �

Z
X

p@1v1 �
Z

X
q@1u1; H1

0ðlÞ ¼ 1;

a2
0ðu;vÞ ¼ �

Z
X

p@2v2 �
Z

X
q@2u2 �

Z
X

hv2 þ
1ffiffiffiffiffiffi
Gr
p

Z
X
@2uj@2v j þ k

Z
X

pþ c
Z

X
q; H2

0ðlÞ ¼ l3;

a3
0ðu;vÞ ¼

1ffiffiffiffiffiffi
Gr
p

Z
X
@1uj@1v j; H3

0ðlÞ ¼
1
l3

;

a4
0ðu;vÞ ¼

Z
X
@1h@1v; H4

0ðlÞ ¼
l2

l3
;

a5
0ðu;vÞ ¼

Z
X
@2h@2v; H5

0ðlÞ ¼ l2l3
and
a1
1ðu; z;vÞ ¼

Z
X

uj@1z1v j þ
Z

X
zj@1u1v j þ

Z
X

z1@1hvþ
Z

X
u1@1fv; H1

1ðlÞ ¼ 1;

a2
1ðu; z;vÞ ¼

Z
X

uj@2z2v j þ
Z

X
zj@2u2v j þ

Z
X

z2@2hvþ
Z

X
u2@2fv; H2

1ðlÞ ¼ l3:
In the three cases, the right hand side, which linearly depends on l1, and the (linear) outputs take the form
f ðv; lÞ ¼ l1

Z
Ch

v; ð6Þ

‘ð1ÞðvÞ ¼
Z

Ch

v; ð7Þ

‘ð2ÞðvÞ ¼
Z

Cs

v1: ð8Þ
2.3. Reduced basis formulation and natural norms

In this section we briefly introduce the main ingredients of the reduced basis formulation by focusing on the role played
by the inf–sup constant and the associated parametrized linear operator. In the offline stage we build a reduced space WN
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generated by a set of finite element solutions uðlðnÞÞ; n ¼ 1; . . . ;N for properly selected parameters lðnÞ; n ¼ 1; . . . ;N (snap-
shots). (In [30] a greedy selection algorithm is described in details.) In the online stage, given a parameter instance l, we have
to solve the problem: find uNðlÞ in WN , such that
aðuNðlÞ;v; lÞ ¼ f ðv; lÞ; 8v 2WN: ð9Þ
Here WN is a problem-specific space of dimension related to N 6 Nmax (for each physical component: velocity, pressure, tem-
perature) that focuses on the (typically very smooth) parametric manifold of interest – fueðlÞjl 2 Dg – and thus the reduced
basis method enjoys very rapid convergence as N increases [5,16]; Nmax is related to the maximal size of our reduced basis.

We are going to compute a sharp and rigorous error bound DNðlÞ over the solution with respect to a norm jjj � jjj, to be
defined in the following, and an error bound Ds

NðlÞ on the output, such that
jjjuN ðlÞ � uNðlÞjjj 6 DNðlÞ and jsN ðlÞ � sNðlÞj 6 Ds
NðlÞ; 8l 2 D;
so that we can efficiently determine if N is too small – and our reduced basis approximation unacceptably inaccurate – or if N
is too large – and our reduced basis approximation unnecessarily expensive. Without rigorous and fast error bounds calcu-
lations we cannot determine in ‘‘real-time” if critical design conditions and constraints are satisfied.

At present, there are only preliminary results on a priori error estimates in the reduced basis method [16,17,21] for linear
problems. Instead we apply the a posteriori analysis as carried out in [3] which is based on the natural norm approach, first
introduced for the linear case in [35]. This relies on the following definitions.

We denote the inner product and norm associated with our Hilbert space X (� XN , finite dimensional) as ðw;vÞX and
kvkX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv;vÞX

p
, respectively. We further define the dual norm for any bounded linear functional f as
kfkX0 � sup
v2X

f ðvÞ
kvkX

:

Recalling (5) and the symmetry of the aq
1’s in the first two variables, the Fréchet derivative of að�; �; lÞ with respect to the first

variable at a point w 2 X can be expressed as
daðw; lÞðu;vÞ ¼
XQ0

q¼1

Hq
0ðlÞa

q
0ðu;vÞ þ

XQ1

q¼1

Hq
1ðlÞa

q
1ðu;w;vÞ; 8u; v 2 X; 8l 2 D:
For any l in D and any solution uðlÞ in the region of our interest, we assume that daðuðlÞ; lÞ is ‘‘stable” and continuous in the
sense that there exist b0 > 0 and c0 2 R such that 8l 2 D,
0 < b0 < bðlÞ � inf
w2X

sup
v2X

daðuðlÞ; lÞðw;vÞ
kwkXkvkX

;

1 > c0 > cðlÞ � sup
w2X

sup
v2X

daðuðlÞ; lÞðw;vÞ
kwkXkvkX

:

ð10Þ
It then follows that in the neighborhood of uðlÞ the solution is unique. We further assume that ‘ and f are in X 0, i.e., they are
bounded linear functionals.

Let uNðlÞ be the reduced basis approximation to uðlÞ given by (9). We next introduce [38,20,9,15,35] the parametrized
linear operator Tl

N : X ! X, such that
ðTl

Nw;vÞX ¼ daðuNðlÞ; lÞðw;vÞ; 8v; w 2 X: ð11Þ
Our method, in particular the inf–sup constant lower bound construction, requires a discrete set of K parameter values,
VK � f�l1; . . . ; �lKg � D, upon which to construct local norms; a fixed integer N 6 Nmax; and an indicator function
IK : D! VK which associates to any l in D a member of VK . (The process by which we select ‘‘good” VK and IK is briefly
described in Section 3.)

We assume that, 8�l 2 VK ,
0 < b�Nð�lÞ � inf
w2X

sup
v2X

daðu�Nð�lÞ; �lÞðw;vÞ
kwkXkvkX

� inf
w2X

kT�l
�N
wkX

kwkX
; ð12Þ

1 > cNð�lÞ � sup
w2X

sup
v2X

daðuNð�lÞ; �lÞðw;vÞ
kwkXkvkX

� sup
w2X

kT�l

N
wkX

kwkX
: ð13Þ
Note that this is true if uNð�lÞ is close enough to uð�lÞ (even though this is not required here); from the Cauchy–Schwarz
inequality, v ¼ T�l

N
w is the inner supremizer in (12) and (13).

We then introduce the ‘‘natural norm”
jjjvjjj�l � kT
�l

N
vkX ; 8v 2 X: ð14Þ
(To simplify the notation we have dropped the index N from the norm symbol.) This norm is the extension of the natural
norm introduced in [35] for the linear case and it was first introduced in [3]. Note that, thanks to our assumptions (12)
and (13) on bNð�lÞ and cNð�lÞ, (14) does indeed define a norm, which is equivalent to k � kX .
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2.4. Trilinear forms continuity constants

Here we briefly recall the main results about the continuity constants of the trilinear forms appearing in the problem to
prepare for the introduction of the error bounds. In the development of the error bound, in [3] it is required that there exists
a positive q�lðlÞ such that
daðz2; lÞðv;wÞ � daðz1; lÞðv;wÞ
		 		 6 q�lðlÞjjjz2 � z1jjj�ljjjvjjj�lkwkX ; ð15Þ
for all z1; z2; v and w in X and similarly, in the construction of an inf–sup lower bound, that there exists a positive qX;�l such
that
XQ1

q¼1

Hq
1ð�lÞa

q
1ðv; z;wÞ

					
					 6 qX;�lkzkX jjjvjjj�lkwkX ; ð16Þ

XQ1

q¼1

Hq
1ðlÞ �Hq

1ð�lÞ

 �

aq
1ðv; z;wÞ

					
					 6 max

q¼1;...;Q1

jHq
1ðlÞ �Hq

1ð�lÞj
jHq

1ð�lÞj
qX;�lkzkX jjjvjjj�lkwkX ; ð17Þ
for all z, v and w in X.
We have to provide these constants; from [3, Section 6.3] we know that
a1
1ðv; z;wÞ þ a2

1ðv; z;wÞ
		 		 6 2

q�lqX

bð�lÞ þ q2
�l

� �
jjjzjjj�ljjjvjjj�lkwkX and

a1
1ðv; z;wÞ þ a2

1ðv; z;wÞ
		 		 6 3q�lqXkzkX jjjvjjj�lkwkX ;
where the constants qX and q�l are such that (cf. the Sobolev embedding theorem)
jvj4 6 qXkvkX and jvj4 6 q�ljjjvjjj�l for all v 2 X
and the semi-norm j � j4 is the restriction of the L4-norm to the velocity and temperature fields,
jvj44 ¼
Z

X
v2

1 þ v2
2 þ v2


 �2
:

Then, since H1
1ðlÞ ¼ 1 and H2

1ðlÞ ¼ l3 ¼ A, by taking
q�lðlÞ � 2
q�lqX

bð�lÞ þ q2
�l

� �
max 1;l3

� 
and qX;�l � 3q�lqX maxf1; �l3g ð18Þ
inequalities (15)–(17) are satisfied.

2.5. Existence and uniqueness

The results in [3], inequalities (16), (17), and definitions (18) allow to state the following existence, uniqueness, and error
estimate results relatively to the simulations presented in Section 4. Let l 2 D; �l 2 VK ; N 6 Nmax and N 6 Nmax, we define
(implicitly dropping some of the subscripts N and N)
b�lðlÞ � inf
w2X

sup
v2X

ðTl

Nw;vÞX
jjjwjjj�lkvkX

¼ inf
w2X

kTl

NwkX

jjjwjjj�l
¼ inf

w2X

kTl

NwkX

kT�l

N
wkX

; ð19Þ

c�lðlÞ � sup
w2X

sup
v2X

ðTl

Nw;vÞX
jjjwjjj�lkvkX

¼ sup
w2X

kTl

NwkX

jjjwjjj�l
¼ sup

w2X

kTl

NwkX

kT�l

N
wkX

: ð20Þ
In Section 2.6 we recall how to compute an explicit rigorous lower bound BLB
�l ðlÞ 6 b�lðlÞ. We can assume that for at least one

�l in VK the lower bound BLB
�l ðlÞ is positive. If this is not possible, then we are not able to give an error estimate for that par-

ticular l. In this case, we would have to enrich VK and provide a natural norm ‘‘near” to this l.
We define
hAðu; lÞ;vi ¼ aðu;v; lÞ � f ðvÞ 8u; v 2 X: ð21Þ
We also introduce the following quantities:
�NðlÞ � kAðuNðlÞ; lÞk0X ;

sN;�lðlÞ �
2q�lðlÞ�NðlÞ

BLB
�l ðlÞ

2 ;

DN;�lðlÞ �
BLB

�l ðlÞ
q�lðlÞ

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sN;�lðlÞ

qh i
:
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Theorem 1 (Theorem 3.3 in [3]). Let l 2 D and assume that for a �l 2 VK ; BLB
�l ðlÞ > 0 and s�lðlÞ 6 1. Then there exists a solution

uðlÞ to (3) such that
jjjuðlÞ � uNðlÞjjj�l 6 DN;�lðlÞ; ð22Þ
moreover this is the unique one satisfying
jjjuðlÞ � uNðlÞjjj�l <
BLB

�l ðlÞ
q�lðlÞ

;

the effectivity of the error bound (22) is
DN;�lðlÞ 6
2c�lðlÞ
BLB

�l ðlÞ
þ s�lðlÞ

" #
jjjuðlÞ � uNðlÞjjj�l: ð23Þ
As a corollary, to compute an error bound for the output, we need the natural dual norm of the output linear functional,
jjj‘jjj�l0 ¼ sup
v2Y

j‘ðvÞj
jjjvjjj�l

:

If BLB
�l ðlÞ > 0 and sN;�lðlÞ 6 1, we can then state the output error bound as
jsðlÞ � sNðlÞj 6 jjj‘jjj�l0DN;�lðlÞ � Ds
N;�lðlÞ:
We do not have any result on the effectivity of the output error bound. Another possibility, which would lead to a smaller
effectivity, is reported in the Appendix of [3] and uses an adjoint problem.

2.6. Lower bound of the inf–sup constant

We recall the construction of a lower bound BLB
�l ðlÞ to the inf–sup parameter b�lðlÞ proposed in [3], which is an extension of

the one proposed in [35] for linear problems. This lower bound plays a really important role in the error bounds and it is one
of the crucial ingredients.

For l 2 D and �l 2 VK , let
aðl; �lÞ ¼ uNðlÞ � uNð�lÞ �
XP

p¼1

ðlp � �lpÞ
@uN

@lp
ð�lÞ 2WNmax
and for p ¼ 1; . . . ; P let
a�l
pð�; �Þ �

XQ0

q¼1

@Hq
0

@lp
ð�lÞaq

0ð�; �Þ þ
XQ1

q¼1

@Hq
1

@lp
ð�lÞaq

1ð�;uNð�lÞ; �Þ þ
XQ1

q¼1

Hq
1ð�lÞa

q
1 �;

@uN

@lp
ð�lÞ; �

 !
: ð24Þ
(In [3] a depends on a third variable, which makes the lower bound more sharp.) We need to compute the extreme general-
ized eigenvalues with respect to jjj � jjj�l of a�l

p; aq
0 and aq

1ð�;uNð�lÞ; �Þ as
k�l

p;inf ¼ inf
w2X

a�l
p w; T�l

N
w

� �
jjjwjjj2�l

; k�l
p;sup ¼ sup

w2X

a�l
p w; T�l

N
w

� �
jjjwjjj2�l

; p ¼ 1; . . . ; P;

c�l

0;q;inf ¼ inf
w2X

aq
0 w; T�l

N
w

� �
jjjwjjj2�l

; c�l
0;q;sup ¼ sup

w2X

aq
0 w; T�l

N
w

� �
jjjwjjj2�l

; q ¼ 1; . . . ;Q0;

c�l

1;q;inf ¼ inf
w2X

aq
1 w;uNð�lÞ; T

�l

N
w

� �
jjjwjjj2�l

; c�l
1;q;sup ¼ sup

w2X

aq
1ðw;uNð�lÞ; T

�l

N
wÞ

jjjwjjj2�l
; q ¼ 1; . . . ;Q1:
The computation of the extreme eigenvalues k�l

p;inf jsup; p ¼ 1; . . . ; P; c�l

i;q;inf jsup; q ¼ 1; . . . ;Qi; i ¼ 0;1, is done for all �l in VK .
In [3] it is shown that a rigorous lower bound to b�lðlÞ is given by
BLB
�l ðlÞ � 1þ

XP

p¼1

min
kp¼k�l

p;infjsup

ðlp � �lpÞkp þ
XQ0

q¼1

min
cq¼c�l

0;q;inf jsup

Hq
0ðlÞ �Hq

0ð�lÞ �
XP

p¼1

ðlp � �lpÞ
@Hq

0

@lp
ð�lÞ

 !
cq

þ
XQ1

q¼1

min
cq¼c�l

1;q;infjsup

Hq
1ðlÞ �Hq

1ð�lÞ �
XP

p¼1

ðlp � �lpÞ
@Hq

1

@lp
ð�lÞ

 !
cq

� qX;�l kaðl; �lÞkX þ max
q¼1;...;Q1

jHq
1ðlÞ �Hq

1ð�lÞj
jHq

1ð�lÞj
kuNðlÞ � uNð�lÞkX

� �
; ð25Þ
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where we denote the minimum of a function g over two values as
2 In o
3 Thi
min
k¼kinfjsup

gðkÞ �min gðkinfÞ; gðksupÞ
� 

:

3. Computational strategy

We present in the following the computational strategy carried out during the tests to build a stable reduced basis
approximation, to select the basis functions, and to set all the ingredients for the error bounds calculations. The computa-
tional procedures have been decoupled into two parts: an offline part (parameter-independent) and an online part (param-
eter-dependent).

3.1. Reduced basis and supremizer

In the offline phase, we have to build up our reduced space WN . The selection of the basis functions is performed by an
optimal sampling algorithm which at each step identifies a new parameter l. Then a finite element problem has to be solved
for the new selected candidate l to get uðlÞ ¼ ðu1;u2;v; p; kÞ. In order to achieve faster convergence (cf. [20,36]), in step 4 of
the algorithm described in the following Section 3.2, the solution uðlÞ is split into its physical components (except k, which is
ignored). These are then added to the reduced space WN .

To ensure solvability of the reduced system we add the constant pressure (0,0,0,1,0) and Lagrange multiplier (0,0,0,0,1)
to WN . To ensure stability, to each pressure mode in WN , we add a supremizer rðuðlÞÞ 2 X (cf. [26,31]). The supremizer is
defined by a null temperature, pressure and Lagrange multiplier, and as the solution of the problem
ðrðuðlÞÞ;vÞX ¼
Z

X
p@iv i 8v 2 X: ð26Þ
Note that there are alternative definitions of the supremizer, cf. [31,24,27,29].

3.2. Offline algorithm

The offline algorithm [3, Section 3] includes the computation of the reduced basis ingredients – optimal selection of the
basis, computation of matrices and vectors in the reduced space (cf., e.g., [30,21]) – and of the a posteriori error estimation
ingredients [35] – selection of VK ¼ f�l1; . . . ; �lKg, solution of the eigenvalue problems [3, Section 6.4], and computation of the
Sobolev embedding constants [3, Section 6.5]. Because of the presence of the reduced basis approximations uNð�lÞ in the def-
inition of the natural norms, these two stages are dependent from each other.

As a preliminary step, we compute qX and we provide surrogates for BLB
�l ð�lÞ and q�l; �l 2 VK , in order to have an error bound

approximation. We expect that BLB
�l ð�lÞ is of order one, so we set its surrogate to b0 < 1, say, 0.2. To compute a surrogate q�lð�lÞ,

we select just one representative �l in VK and replace uNð�lÞ by uð�lÞ in (11)2 (hence in (14)); the value found will serve as a
surrogate for q�lð�lÞ for all the elements in VK . As a result we have an efficient – online fast – tool to approximately compute
the error for a given l in D.

We are then ready to start our offline algorithm. The optimal (‘‘greedy”) process for the selection of the basis functions of
WN consists of the steps 2–5; in step 6 we solve for the generalized eigenvalue problems described in Section 2.6. In steps 2a
and 7 we are required to solve a reduced basis problem (with an ‘‘intermediate” space WN); this is done by applying the on-
line algorithm described in the following section:

1. manually set K and a representative set VK ¼ f�l1; . . . ; �lKg; compute qX and a surrogate for q�l;
2. start an optimal search algorithm: for a large random3 set of ls
(a) solve the reduced basis problem with the existing basis;
(b) select the ‘‘nearest” �l in VK and compute �NðlÞ, sN;�lðlÞ and DN;�lðlÞ by replacing q�l and b�lðlÞ by their surrogates;
(c) select the optimal l as follows:
ther wo
s can be
(i) if for some ls, (a) did not converge, select the ‘‘furthest” from the previously selected ones;
(ii) if for some ls, sN;�lðlÞ is bigger than 1, select the one with the largest sN;�lðlÞ;
(iii) otherwise select the one with the largest DN;�lðlÞ.
3. solve the finite element problem (3) for the selected l;
4. increase N and enrich the reduced basis space WN with uðlÞ. This step involves Gram–Schmidt orthogonalization [21]

and the computation of the matrix and scalar products necessary for the reduced basis matrices and the online
computation of the Y-dual norm of the residual (cf. [23,35]). In our model problems, uðlÞ is split into its physical
rds, in this first step we do not need the reduced basis space WN .
replaced by a deterministic search over a large set of sample points.
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components and a stabilizing supremizer is computed; the reduced space is hence enriched by four functions (cf. Sec-
tion 3.1): three basis functions ðu1;u2;0;0;0Þ, ð0;0;v;0;0Þ, ð0;0;0; p;0Þ, representing velocity, temperature and pres-
sure, respectively, as well as the supremizer rðuðlÞÞ, are added to our reduced basis space. The total dimension of the
reduced basis space is given by 2þ 4 � N (the preliminary constant pressure, the Lagrange multiplier, N velocity solu-
tions, N temperature solutions, N pressure solutions and N computed supremizers);

5. if the maximum number of basis functions desired or the tolerance requested for DN;�lðlÞ is achieved, go to 6, otherwise
go to 2;

6. set N to the reached number of basis functions and compute all the ingredients for the construction of BLB
�l ð�lÞ;

7. start a random process: for a large set of ls check that the reduced basis problem can be solved, that BLB
�l ðlÞ is positive

for at least one �l and that sN;�lðlÞ 6 1 for this �l.If this is ok, then all the online components are ready and we set
Nmax ¼ N, otherwise either add some �ls to VK and go to 6, or go to 2 and replace b�lðlÞ by BLB

�l ðlÞ instead of by b0.
Fig. 2. Streamlines at Grashof numbers Gr ¼ 5� 104;6:125� 104;7:5� 104, (first, second, third row), Prandtl number Pr ¼ 7, and aspect ratio of the cavity
A ¼ 1;1:125;1:25 (first, second, third column).

Table 1
Wall times on a 16 nodes cluster; ‘‘offline RB”: computation of the reduced basis ingredients (steps 2–5 in the offline algorithm), Nmax is the number of selected
ls; ‘‘offline BLB

�l ”: resolution of the eigenvalue problems (step 6 in the offline algorithm), the number between brackets is the number of selected �ls; ‘‘FE”:
solution of the finite element problems for some instances of the parameters, the number between brackets is the number of instances.

Offline RB ðNmaxÞ Offline BLB
�l ð#�lÞ FE ð#lÞ

Gr–Pr 1h440 (12) 27h150 (21) 300 (9)
Gr–A 11h240 (18) 41h480 (22) 230 (9)
Pr–A 13h000 (18) 41h410 (20) + 36h400 (11) 1h040 (9)
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The computational effort is largely dependent on N and Nmax. In the offline stage, beside Nmax finite element solutions, we
have to compute ‘‘finite element” matrix and scalar products and solve 2KðQ0 þ Q 1Þ ‘‘finite element” generalized eigenvalue
problems.

3.3. Online algorithm

The online procedure, for a given l 2 D and N 6 Nmax, reads

I solve the reduced basis problem (9). We solve this by a Newton algorithm; as initial guess we take a solution at a
nearby parameter used to generate the reduced basis. Compute sNðlÞ ¼ ‘ðuðlÞÞ;
Fig. 3. Streamlines at Grashof number Gr ¼ 105, Prandtl number Pr ¼ 1, and aspect ratio A ¼ 1: streamlines of the reduced basis solution for N ¼ 2;3;4;5;6
and of the reference finite element solution.



Fig. 4. Grashof and Prandtl numbers as parameters in the range [103,105] � [0.7,7]. Convergence rate and CPU time comparison over 1000 random samples.
Ds
ð1Þ;N and Ds

ð2Þ;N are the output error bounds referring to the two different outputs for the samples tested, DN is the error bound on the solution. RB[ms]
counts the average CPU time for solving the reduced basis and D[ms] the CPU time for the error bound (dual norm of the residual and inf–sup lower
bounds).

Fig. 5. Grashof and Prandtl numbers in the range [103,105] � [0.7,7]. The x-axis represents the Grashof number and the y-axis the Prandtl number, both in
logarithmic scale. Upper left: inf–sup lower bound BLB

�l ðlÞ. Upper right: s�lðlÞ. Lower left: upper error bound DN;�lðlÞ on the field variable. Lower right:
effectivity on the field variable error bound w.r.t. the natural norm DN;�lðlÞ=jjjuðlÞ � uNðlÞjjj�l .
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Fig. 6. Grashof and Prandtl numbers in the range [103,105] � [0.7,7]. The x-axis represents the Grashof number and the y-axis the Prandtl number, both in
logarithmic scale. Upper left: output sð1Þ. Upper right: real error jsð1ÞðlÞ � sð1Þ;NðlÞj between finite element and reduced basis solutions. Lower left: upper
error bound for the output Ds

N;�lðlÞ. Lower right: logarithm of the effectivity Ds
N;�lðlÞ=jsð1ÞðlÞ � sð1Þ;NðlÞj.
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II compute �NðlÞ;
III order VK in increasing distance4 from l. Compute BLB

�l ðlÞ and sN;�lðlÞ until we find �l in V such that BLB
�l ðlÞ > 0 and

sN;�lðlÞ 6 1. We set IKðlÞ ¼ �l;
IV compute DN;�lðlÞ and Ds

N;�lðlÞ.

If in step III we do not find any valid �l, our method fails: we cannot provide an error bound nor even existence; if
N 6 Nmax, then N must be increased, otherwise our basis is not rich enough.

The computational effort is independent of N : step I has dominant complexity N3 þ Q 1N2 times the number of Newton
iterations required, while step II has complexity Q2

1N4 þ Q 0Q1N3. The complexity of steps III and IV is dominated by that of
step II.

4. Numerical results

4.1. Finite element solver

We implemented a parallel finite element solver that uses the Trilinos5 library, in particular Epetra as MPI interface, Ame-
sos [34] as dense direct solver, Aztec00 as linear iterative solver with domain decomposition preconditioners from IFPACK [33],
and Anasazi as eigenvalue solver, in particular LOBPCG [13].

We used Taylor–Hood P2 (velocity, temperature)/P1 (pressure) finite elements for a total of 38,000 degrees of freedom.
We modified a preconditioner proposed in [4]: at a point u 2 X, we define P0 as daðu; lÞ where the divergence operator is
replaced by the pressure mass matrix on the pressure block diagonal. We then construct a one-level Schwarz preconditioner
P [33,32] to P0 and perform a local LU factorization. We solve the Jacobian system with restarted PGMRES(500) with precon-
ditioner P. The resulting operator P, which depends on u and l, is fast, distributed, and is an effective preconditioner for the
problem up to Gr ¼ 107.
4 The type of distance function is not much relevant.
5 http://software.sandia.gov/trilinos/.

http://software.sandia.gov/trilinos/
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We are interested in one solution branch, therefore we use homotopy with respect to the parameters when solving the
finite element problem. Without homotopy, the finite element problem does not converge. In contrast, in our examples, the
Fig. 7. Grashof and aspect ratio as parameters in the range ½5� 104;7:5� 104� � ½1:25;1:5�. Convergence rate and CPU time comparison over 1000 random
samples. Ds

ð1Þ;N and Ds
ð2Þ;N are the output error bounds referring to the two different outputs for the samples tested, DN is the error bound on the solution. The

maximal error bounds are taken over the samples we can provide existence and unicity for. RB[ms] counts the mean CPU time for solving the reduced basis
and D[ms] the one for the error bound (dual norm of the residual and inf–sup lower bounds).

Fig. 8. Grashof and aspect ratio in the range ½5� 104;7:5� 104� � ½1:25;1:5�. The x-axis in log scale represents the Grashof number and the y-axis in linear
scale represents the aspect ratio. Upper left: inf–sup lower bound BLB

�l ðlÞ. Upper right: s�lðlÞ. Lower right: DN;�lðlÞ. Lower left: effectivity on the field variable
error bound w.r.t. the natural norm.
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reduced basis problem does not need homotopy: our initial guess is a known solution for a nearby parameter (a solution that
has generated our reduced space).

In Fig. 2 we present the streamlines for increasing Grashof number ðGr ¼ 5� 104;6:125� 104;7:5� 104Þ and different
aspect ratio ðA ¼ 1;1:125;1:25Þ and Pr ¼ 7. We note the presence of an asymmetric convective cell and a thermal boundary
layer against the heated wall.

In Table 1 we report the computational time needed to complete the offline part of our method and also the time to find
the finite element solutions for nine different parameter instances. The offline part takes much more time than just some
finite element resolutions; the advantage of the reduced basis, resides on the offline/online splitting. In fact, once the ingre-
dients are ready and given a parameter instance, the resolution of the reduced basis problem and the computation of a rig-
orous error bound takes less than a tenth of a second on a single processor notebook to provide a certified and reliable
solution (cf. Figs. 4, 7 and 10).

4.2. Reduced basis resolution and error bounds

Before introducing the numerical results for different combinations of variable parameters, we show here the ‘‘visual”
convergence of the reduced basis approximation to the reference finite element solution. We report in Fig. 3, as example,
the reduced basis solution with streamlines at Grashof number Gr ¼ 105, Prandtl number Pr ¼ 1, and aspect ratio A ¼ 1
for N ¼ 2;3;4;5;6 and the comparison with the reference finite element solution. We can see the fast convergence of the
method and how the physical solution provided by reduced basis method is approaching the reference solution. For
N ¼ 6 the reduced basis solution is already a very good approximation for the finite element solution. However, this is
not satisfactory, since in this case for N ¼ 6 we have that sN;�lðlÞ > 1, which means that we do not have any guarantee that
a reference finite element solution exists nearby the reduced basis approximation.

In the following subsections we provide some numerical results for the proposed methodology combining each time two
different parameters: Grashof–Prandtl, Grashof–aspect ratio and Prandtl–aspect ratio by reporting computational times and
some ingredients used to compute error bounds on the solution and on the outputs.
Fig. 9. Grashof and aspect ratio in the range ½5� 104;7:5� 104� � ½1:25;1:5�. The x-axis in log scale represents the Grashof number and the y-axis in linear
scale represents the aspect ratio. Upper left: output sð1Þ . Upper right: real error jsð1ÞðlÞ � sð1Þ;NðlÞj between finite element and reduced basis solutions. Lower
left: upper bounds to error for the same output, Ds

N;�lðlÞ. Lower right: effectivity of our output error upper bound, Ds
N;�lðlÞ=jsð1ÞðlÞ � sð1Þ;NðlÞj.
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4.2.1. Case Gr–Pr
In Fig. 4 we report the convergence rate and CPU time comparison over 1000 random samples (different for different N)

for the case with Grashof and Prandtl numbers as parameters (cf. Section 2.2.1) in the range ½103;105� � ½0:7;7�. We report
the most pessimistic value over our samples: max sN;�lðlÞ > 1 means that we do not have an error estimate for every sample.
Fig. 10. Prandtl and aspect ratio as parameters in the range [0.7,7] � [1.2,1.4] and VK ¼ 31. Convergence rate and CPU time comparison over 1000 random
samples. RB[ms] counts the mean CPU time for solving the reduced basis and D[ms] the one for the error bound (dual norm of the residual and inf–sup
lower bounds).

Fig. 11. Prandtl and aspect ratio in the range [0.7,7] � [1.2,1.4] and VK ¼ 20. The x-axis represents the Prandtl number and the y-axis the aspect ratio, both
in linear scale. Upper left: inf–sup lower bound BLB

�l ðlÞ. Upper right: s�lðlÞ. Lower left: DN;�lðlÞ. Lower right: effectivity on the field variable error bound w.r.t.
the natural norm.
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Ds
ð1Þ;N and Ds

ð2Þ;N are the output error bounds referring to the two different outputs for the samples tested, DN is the error
bound related to the field variables. Their maxima are taken over the samples we can provide existence and unicity for
(i.e., b�lðlÞ > 0 and sN;�lðlÞ 6 1). RB[ms] counts the average CPU time for solving the reduced basis problem and D[ms] the
one for the error bound computation (dual norm of the residual and inf–sup lower bounds). Note that RB[ms] is of order
N3, while D[ms] is of order N4, which explains the behavior in Fig. 4 (cf. end of Section 3.3).

Figs. 5 and 6 show the values of the quantities related to the error bounds with a reduced basis approximation with a total
dimension of 2þ 4 � N, where N ¼ 12. In Fig. 5 we report upper left the inf–sup lower bound BLB

�l ðlÞ. The small hole represents a
region where our lower bound is negative. Where BLB

�l ðlÞ ¼ 1 we also recognize the elements of VK ¼ f�l1; . . . ; �lKg (here K ¼ 21).
Upper right we report s�lðlÞ and lower left the upper bound DN;�lðlÞ to the natural norm of the error in the field variable. Lower
left we recognize two holes (left for demonstrative purposes) where we do not have an error estimate: the first one is related to
the negative BLB

�l ðlÞ, the second one to s�lðlÞ > 1 and in particular to BLB
�l ðlÞ close to zero (the dual norm of the residual is actually

already small). To fill these holes we should therefore add two �l in the middle to provide a complete coverage in our parameter
space (cf. Pr–A case). Lower right we report the effectivity of our error upper bound: DN;�lðlÞ=jjjuðlÞ � uNðlÞjjj�l; here, only for
comparison, we have computed the finite element solution for each random parameter. The error bounds are small and, also
important, the effectivities are small thanks to our natural norms approach (cf. (23)). Note how the error bounds are closely
related to the parameters that generate our reduced basis, while the effectivities are closely related to the inf–sup lower
bound. Since our inf–sup lower bound is better ‘‘nearby a �l” the effectivity is better ‘‘nearby a �l”.

In Fig. 6 we report upper left the output sð1ÞðlÞ as function of the Grashof and Prandtl numbers, upper right the computed
error jsð1ÞðlÞ � sð1Þ;NðlÞj on the first output, and lower left the upper bound to error for the same output Ds

N;�lðlÞ. Lower right
we report the effectivity of our error upper bound, Ds

N;�lðlÞ=jsð1ÞðlÞ � sð1Þ;NðlÞj. Note that the error bound is always smaller than
8� 10�3 and that the effectivities for the first output are less sharp than for the field variable (the second output leads to
similar results). However the worse effectivities appear when the real error is very small, otherwise when the real error
is ‘‘large” the effectivities are good.

4.2.2. Case Gr–A
We report the equivalent figures as for the Gr–Pr case, here we describe only the differences. The parameters are the Gras-

hof number and the aspect ratio of the cavity (cf. Section 2.2.2) in the range ½5� 104;7:5� 104� � ½1:25;1:5� and VK with 22
Fig. 12. Prandtl and aspect ratio in the range [0.7,7] � [1.2,1.4] and VK ¼ 31. The x-axis represents the Grashof number and the y-axis the aspect ratio, both
in linear scale. Upper left: inf–sup lower bound BLB

�l ðlÞ. Upper right: s�lðlÞ. Lower left: DN;�lðlÞ. Lower right: effectivity on the field variable error bound w.r.t.
the natural norm.



Fig. 13. Prandtl and aspect ratio in the range [0.7,7] � [1.2,1.4] and VK ¼ 31. The x-axis represents the Prandtl number and the y-axis the aspect ratio, both
in linear scale. Upper left: output sð1Þ . Upper right: real error jsð1ÞðlÞ � sð1Þ;NðlÞj between finite element and reduced basis solutions. Lower left: upper bounds
to error for the same output, Ds

N;�lðlÞ. Lower right: effectivity of our output error upper bound, Ds
N;�lðlÞ=jsð1ÞðlÞ � sð1Þ;NðlÞj.
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elements. Fig. 7 shows the convergence rate and the online CPU time with respect to the number of reduced basis functions
used.

Figs. 8 and 9 show the values of the quantities related to the error bounds with a reduced basis approximation with a total
dimension of 2þ 4 � N, where N ¼ 18.

In this example (cf. Fig. 8), the inf–sup lower bound is always positive and s�lðlÞ smaller or equal to one. We are therefore
able to provide an error estimate for all the 1000 parameters that we have tested. In Fig. 9 we report the results concerning
the first output.

4.2.3. Case Pr–A
The parameters are the Prandtl number and the aspect ratio of the cavity (cf. Section 2.2.3) in the range [0.7,7] � [1.2,1.4].

Fig. 10 shows the convergence rate and the online CPU time with respect to the number of reduced basis functions used. Figs.
11–13 show the values of the quantities related to the error bounds given by a reduced basis approximation with a total
dimension of 2þ 4 � N, where N ¼ 18. We first take VK with 20 elements (Fig. 11); for several parameter values we are
not able to provide a positive inf–sup lower bound (the holes represent a region where our lower bounds are negative,
and therefore useless). Therefore, we complete VK with other 11 elements (Fig. 12), this allows to compute an error bound
for (almost) all the parameters in D. Where our lower bound is still negative one or more �ls should be added in the corre-
sponding zones.

5. Conclusions and perspective work

We have extended to multi-parameter dependence the numerical results proposed in [3,20,36] for steady incompressible
Navier–Stokes equations to describe natural-convection phenomena. We have considered the combination of Grashof and
Prandtl numbers as parameters and we have included the presence of geometrical changes (with the aspect ratio of the cav-
ity as a further parameter). The methodology is feasible: the offline CPU time is still acceptable and the online performance is
not affected. The approach has proven good effectivities in the field variable error bounds and empirical good effectivities in
the output error bounds.
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